(Q) Let p be a fixed point of $g(x)$.
(a) show that if $g^{\prime}(p)=g^{\prime \prime}(p)=\cdots=g^{(k-1)}(p)=0$ and $g^{(k)}(p) \neq 0$, then the fixed point iteration of $g(x)$ will converge to p with $R=k$ and $A=\left|\frac{g^{(k)}(p)}{k!}\right|$
(b) Use part (a) to show that if p is a simple root of $f(x)$, then Newton's iteration will converge to p with $R=2$ and $A=\left|\frac{f^{\prime \prime}(p)}{2 f^{\prime}(p)}\right|$
Proof: (a) Apply Taylor's expansion of $g(x)$ about $x=p$
$g(x)=g(p)+g^{\prime}(p)(x-p)+\frac{g^{\prime \prime}(p)}{2!}(x-p)^{2}+\cdots+\frac{g^{(k-1)}(p)}{(k-1)!}(x-p)^{k-1}+\frac{g^{(k)}(c)}{k!}(x-p)^{k}$
but $g(p)=p$ and $g^{\prime}(p)=g^{\prime \prime}(p)=\cdots=g^{(k-1)}(p)=0$
$\rightarrow g(x)=p+\frac{g^{(k)}(c)}{k!}(x-p)^{k}$
Substitute $x=p_{n} \rightarrow g\left(p_{n}\right)=p+\frac{g^{(k)}(c)}{k!}\left(p_{n}-p\right)^{k}$, c between p_{n} and p
but $g\left(p_{n}\right)=p_{n+1} \rightarrow p_{n+1}-p=\frac{g^{(k)}(c)}{k!}\left(p_{n}-p\right)^{k} \rightarrow \frac{p_{n+1}-p}{\left(p_{n}-p\right)^{k}}=\frac{g^{(k)}(c)}{k!} \rightarrow \frac{\left|E_{n+1}\right|}{\left|E_{n}\right|^{k}}=\left|\frac{g^{(k)}(c)}{k!}\right|$
now take limit an $n \rightarrow \infty$ and considering that $c \approx p$ when $n \rightarrow \infty$
$\rightarrow \lim _{n \rightarrow \infty} \frac{\left|E_{n+1}\right|}{\left|E_{n}\right|^{k}}=\left|\frac{g^{(k)}(p)}{k!}\right| \rightarrow R=k$ and $A=\left|\frac{g^{(k)}(p)}{k!}\right|$
(b) We know that Newton's iteration is a special case of FPI with $g(x)=x-\frac{f(x)}{f^{\prime}(x)}$

Therefore, based on part (a), we only need to prove that $g^{\prime}(p)=0$ but $g^{\prime \prime}(p) \neq 0$
Recall that p is a simple root of $f(x)$ mean $f(p)=0$ and $f^{\prime}(p) \neq 0$
now, $g^{\prime}(x)=1-\frac{\left(f^{\prime}(x)\right)^{2}-f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}}=\frac{f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}} \quad \rightarrow g^{\prime}(p)=0$
now, $g^{\prime \prime}(x)=\frac{\left(f^{\prime}(x)\right)^{2}\left[f(x) f^{\prime \prime \prime}(x)+f^{\prime \prime}(x) f^{\prime}(x)\right]}{\left(f^{\prime}(x)\right)^{4}}=\frac{f(x) f^{\prime \prime \prime}(x)+f^{\prime \prime}(x) f^{\prime}(x)}{\left(f^{\prime}(x)\right)^{2}} \rightarrow g^{\prime \prime}(p)=\frac{f^{\prime \prime}(p)}{f^{\prime}(p)} \neq 0$
$\rightarrow R=2$ and $A=\left|\frac{g^{\prime \prime}(p)}{2!}\right|=\left|\frac{f^{\prime \prime}(p)}{2 f^{\prime}(p)}\right|$

